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training data. By averaging the predictions of the individual 
decision trees, overfitting is reduced and the predictive 
accuracy is increased. Decision trees contain sequential nodes 
that split the data into increasingly pure class separation using 
the Gini index (a measure of class purity within a set) until the 
final node makes a classification or regression prediction 
(Ref. 40). Each split is made based on a single input variable 
and the split value and variable is chosen to maximize the class 
purity after the split. Data normalization was not performed 
because it does not affect the Gini index and does not benefit 
the training of random forest models. Random forests were 
trained in this work using the scikit-learn library in Python 
(Ref. 41). 

Random forests require complete observations in the training 
data and to make predictions (i.e., there can be no missing 
values for any of the variables). To evaluate performance on 
sparse data as a baseline, the sparse datasets were pre-processed 
to impute the missing values. Data imputation was performed 
with a k-nearest neighbors approach using the scikit-learn 
library. The k-nearest neighbors model was fit to the training 
set and applied to impute missing values on both the training 
and test sets.  

Statistical Metrics 

The accuracy of models in predicting continuous variables is 
measured with the coefficient of determination (R2), which is 
the proportion of variance in the target variable that is explained 
by the input variables (Ref. 42). When R2 = 1, the model is 
perfectly accurate. A model that always predicts the mean of 
the target value, has an R2 of 0. The equation for R2 is given by: 
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where y is the true value of the target variable, 𝑦𝑦� is the mean of 
the target value in the data, and 𝑦𝑦� is the predicted value for each 
𝑖𝑖th sample. 

Two accuracy metrics are reported for categorical variables: 
precision and F1 score. Precision is simply the number of 
correct model predictions divided by the total number of 
predictions. The F1 score accounts for precision and recall 
equally by the harmonic mean of precision and recall: 

 1
precision*recallscore 2*
precision + recall

F =   (2) 

where recall is the number of true positive predictions for each 
class divided by the number of samples in that class (Ref. 43). 

For multi-label categorical predictions (more than 2) the F1 
score is given by the average F1 score of each class. 

Two metrics are used to quantify the strength of the 
relationship between two variables. The Pearson’s correlation 
coefficient, r, is a measure of the linear correlation between two 
variables and is given by: 
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where x and y are two variables, 𝑥̅𝑥 and 𝑦𝑦� are the mean of the 
two variables, and 𝑖𝑖 gives the sample index. Alchemite™’s 
importance index is a proprietary measure of the importance of 
each input variable in predicting each target variable. 

Results 
Shape Memory Alloy Data 

Alchemite™ and random forest models were trained to 
predict the target variables of the SMA dataset. The four target 
variables are indicated in blue in Table 2. 

Figure 2 shows the prediction accuracy of each model on the 
four targets. In each case the random forest model had a slightly 
higher R2 than the Alchemite™ models, but the results were 
comparable. Alchemite™’s slightly reduced accuracy is likely 
due to reporting uncertainty in the predictions, which requires 
training ensembles of sub-models on bootstrap samples of the 
data. Because each sub-model is trained on fewer unique 
observations, the overall accuracy is reduced compared to if 
uncertainty was not calculated. The value of uncertainty 
prediction is demonstrated in Figure 2(a) where poor 
predictions given by each model are indicated by blue and 
orange arrows for Alchemite™ the random forest respectively. 
The blue error bars around the Alchemite™ predictions show 
the model’s uncertainty about the prediction. Predictions far 
from the actual value (large error) typically have higher 
uncertainty. This is extremely valuable from a design 
perspective. It is impossible to know how confident to be in any 
given prediction from the random forest or whether the model 
is extrapolating far outside the training domain. By reporting 
uncertainty, Alchemite™ allows a user to make an informed 
decision about the amount of risk associated with relying on a 
particular prediction. 

In order to evaluate the performance of Alchemite™ in 
imputing missing values, 20 percent of the data values in each 
attribute were randomly removed. To predict the target 
variables with the random forest models, the data was pre-
processed to impute the missing values using a k-nearest 
neighbors approach. Alchemite™ imputed the sparse data 
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Figure 5.—Prediction accuracy of Alchemite™ and random forest models on the heat exchanger dataset. (a to d) 

show categorical predictions on the configuration (a, b) and material (c, d) by Alchemite™ shown in blue (a, c) and 
the random forest shown in orange (b, d). (e and f) show the models’ predictions on the thermal resistance I and 
area (f).  
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Figure 6.—Plots of relationships between variables in the heat exchanger dataset. 

(a) shows the Pearson’s correlation between the continuous variables. Correlations 
involving categorical variables are not true Pearson correlations. (b) shows 
Alchemite’s™ importance metric of each input variable (horizontal axis) in 
predicting each target variable (vertical axis). 
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TABLE 4.—RESULT OF OPTIMIZATION TO PRODUCE A 
HEAT EXCHANGER WITH A THERMAL RESISTANCE 
BELOW 1 °C/W (TARGET INDICATED IN ORANGE). 
SEVERAL CONSTRAINTS TO THE OPTIMIZATION 

ARE SHOWN IN BLUE. THE OPTIMAL PARAMETERS 
ARE SHOWN IN BLACK TEXT 

Parameter Value 
Height 63.04 mm 
Weight 3729.0 g 
Base width 37.80 mm (max: 75 mm) 
Base length 55.96 mm (max: 75 mm) 
Splay width 49.18 mm (max: 100 mm) 
Splay length 58.47 mm (max: 100 mm) 
Airflow 513.2 CFM (max: 800 CFM) 
Base shape Rectangle 
Material Aluminum 
Configuration Integrated Fan Sink 
Thermal resistance 0.261±0.037 °C/W (Target: < 1 °C/W) 

 
the design could not afford power or an additional power cable 
for the heat sink fan, the optimization could be constrained to 
not use an integrated fan sink. In the training dataset the base 
and splay width was always larger than the lengths by design. 
However, this optimal design had the lengths larger than the 
width which may therefore suggest that the model is 
extrapolating outside of the training data. This could be fixed 
by adding a constraint that forces the lengths to be less than the 
widths. Admittedly, the optimization produces a couple of 
dubious results which may stem from this extrapolation. For 
example, 8.1 lb (3.7 kg) is quite heavy for a 2.2×1.5 in. 
(37.8×55.7 mm) aluminum heat exchanger. It is also 
unexpected that the optimizer didn’t use to the maximum 
allowed constraints, to reduce the thermal resistance. This 
accentuates the need for sound statistical and data science 
principals when setting up the Alchemite™ model and 
optimization to avoid strange results which may stem from 
allowing the model to extrapolate, especially in nonphysical 
ways. 

Conclusion 
Alchemite™ was successful in predicting desired targets of a 

materials and a non-materials dataset. Alchemite™ was able to 
handle inputs and predictions of both continuous and 
categorical variables. As a result of initial analysis during this 
work, improvements were made to Alchemite to increase 
categorical prediction accuracy. Compared to random forest 
baseline models, Alchemite™ was far superior when operating 
on sparse data and better than or nearly equivalent to random 

forests on the full datasets while also quantifying uncertainty. 
Alchemite™ was also used to suggest optimal experiments for 
inverse design, perform design optimization, and rank 
important features. Physical validation of suggested parameters 
was not performed. Alchemite™’s uncertainty quantification is 
useful to know when the model may be extrapolating and how 
much to rely on a given prediction and is critical for performing 
active learning. 

Several insights about the datasets were gained from this 
analysis. The thermal resistance of the heat exchangers was 
highly correlated with height; however, the Alchemite™ 
importance index showed that weight was a stronger predictor. 
Surprisingly, airflow was not a strong predictor of thermal 
resistance. In order to maximize thermal resistance when 
airflow was limited in the design, a heat exchanger with an 
integrated fan was suggested as being optimal. The choice and 
amount of dopant in NiTi SMAs had the largest impact on the 
austenite and martensite start and finish temperatures, which 
was not apparent from Pearson’s correlation alone. To 
maximize the austenite finish temperature, Alchemite™ 
suggested replacing a large amount of Ni with Au.  
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